civil engineering
Tuesday, October 25, 2011
Sipil dan Semua Software Pendukungnya
Program Komputer terpadu untuk pemodelan, analisis, disain, penggambaran, dan perhitungan volume dan biaya struktur gedung dan struktur lainnya. Untuk baja dan beton. Dapat input model dari Autocad dan menghasilkan gambar ke Autocad. Gambar 3D dalam format VRML dapat dihasilkan dengan cepat. Menggunakan multiple windows/views, garis as arah X,Y, construction lines, tersedia berbagai mesh generator. Disain fundasi footing dan tiang secara otomatis. Sangat mudah digunakan dan terbukti lebih cepat 2x dari ETABS V.8.0 dalam keseluruhan proses dari awal sampai selesai (pengalaman di berbagai konsultan struktur di Jakarta yang telah terbiasa menggunakan ETABS V.8.0 dan pindah ke SANSPRO V.4.7)
SOILAB V.3.1
Program bantu laboratorium mekanika tanah yang populer untuk mengolah data lab soil dan mencetak grafiknya untuk laporan. Tersedia dalam versi database (semua data disimpan dalam database) dan nondatabase (data disimpan terpisah per file). Memiliki 12 module:
- CPT (Test Sondir/Dutch Cone Penetration Test, untuk kapasitas 2.5 ton dan 10 ton)
- BORLOG (Boring Log dengan symbol standar AASHTO, FAA, Marine Geology, Rock
Mechanics, Export borlog ke Autocad untuk pembuatan soil profile)
- GRAINSZ (Grain Size Sieve Analysis, uji saringan untuk penentuan gradasi butiran tanah)
- ATEBERG (Atterberg Limit Test untuk plastisitas tanah)
- USC (Unified Soil Classification, klasifikasi tanah berdasarkan test Grain Size, Atterberg
menurut AASHTO, ASTM, NAVAC-DM7)
- CBR (California Bearing Ratio Test, Test kepadatan tanah)
- COMPACT (Compaction Test, Test kepadatan tanah)
- DSHEAR (Direct Shear Test, Test kekuatan geser tanah cara langsung)
- UNCONF (Unconfined Compression Test, Test kekuatan geser tanah, tanpa tekanan keliling)
- TRIAXIAL (Triaxial Compression Test, Test kekuatan geser tanah dengan tekanan keliling)
- CONSOL (Consolidation Test, Test penurunan tanah)
- SETTLE (Settlement Analysis, 3Dusing Numerical Integration, multi soil layer)
PSLOPE
Program analisis stabilitas lereng dengan fasilitas: Metode Bishop, Metode Fellenius, berbagai jenis arc, bedrock, multi-zone soil layer, automatic search of circle location, graphical interface, anchor load, surface load, very easy to use. Telah digunakan untuk projek dam, reklamasi, basement, perkuatan lereng, dsb.
INFLINE
Program untuk menghasilkan influence line (garis pengaruh) dari balok menerus multispan. Garis pengaruh displacement, shear, moment, reaction dapat digenerate dan ditampilkan grafiknya dengan cepat. Luas dan gaya-gaya maksimum dapat dilaporkan dalam bentuk tabel untuk tiap konfigurasi beban. Dapat digunakan untuk disain girder jembatan, disain deck jembatan.
NBRIDGE
Program disain (berbasis INFLINE) jembatan steel girder otomatis, multi-span, non-composite/composite, hot-rolled/welded/plate girder, cukup dengan input panjang dan lebar jembatan, jarak dan jenis girder, tebal deck, jenis truck, garis pengaruh dan momen maksimum akan dihasilkan secara otomatis. Beban dapat digenerate menurut AASHTO LRFD-98 dan BMS-92. Pemodelan dan analisis dilakukan secara otomatis. Laporan disain lengkap untuk girder dan pier berdasarkan AASHTO LRFD-98. Disain untuk bearing pad, deck dan barrier akan menyusul. Sangat mudah digunakan, satu jembatan dapat selesai dalam 5 menit.
PCAD for Windows
PCAD adalah program Parametric CAD (produk seperti Autocad) yang dulu dibuat dalam DOS oleh ESRC. Pada PCAD versi DOS tersedia fasilitas 2D smart drawing, relational cad objects, 2D/Contour to 3D generator (Surfer), Road Alignment, Volume cut and fill calculation, Civil Object generator, Programmable language. Namun karena masih bekerja dalam DOS, sekarang PCAD masih dalam tahap pengerjaan untuk memindahkannya ke Windows. Target PCAD for Windows adalah software khusus untuk Penggambaran Struktur Beton dan Baja 2D.
NPILE
Program untuk mengolah data Test Sondir dan SPT Borlog untuk mendapatkan kapasitas pondasi tiang pancang dan bored pile dengan berbagai metode statik dan dinamik.
DSGWIN
Program untuk menghitung kapasitas satu penampang beton untuk balok, pelat, kolom bulat, kolom persegi, dan penampang lainnya untuk compression/tension, uniaksial bending, biaksial bending. Dapat melakukan analisis terhadap sejumlah penampang sekaligus berdasarkan ACI-89, PBI-91. Satuan yang digunakan adalah British, SI, MKS. Program for Windows ini menggantikan CBEAM, RCOL, CCOL, BCOL. DSGWIN menggunakan prosedur disain penampang yang sama dengan SANSPRO. Sangat mudah digunakan.
CONBAR
Program untuk menghitung kapasitas satu penampang beton dan diagram interaksinya untuk balok, pelat, kolom bulat, kolom persegi, dan penampang trapezoidal umum lainnya untuk compression/tension, uniaksial bending, biaksial bending. Analisis dilakukan per butiran tulangan. Versi DOS.
ANGLE
Program bantu untuk menghitung sifat penampang siku berbagai ukuran. Output dalam format STEELDBS dan dapat digabungkan dengan SANSPRO steel database file USER.DBS.
STEELDBS
Program database penampang baja. Memiliki 1300 penampang baja untuk siku, pipa, IWF, HWF, Welded Shape, C, Light C, Tee. Dapat mencari berdasarkan nama, ukuran, moment dan aksial. Kompatibel dengan SANSPRO Steel Database dan menggunakan database baja yang sama.
PURLIN
Program bantu untuk menghitung gording baja secara ekonomis dan cepat. Cukup memasukkan sudut atap, bentang dan jarak gording/portal, maka daftar gording yang memenuhi syarat akan dikeluarkan berikut stress dan lendutan maksimumnya. User tinggal memilih yang paling ekonomis diantaranya dan kemudian akan dihasilkan laporan lengkap perhitungannya yang siap dicetak dan disisipkan dalam laporan perencanaan struktur. Cukup 5 menit per type gording.
BASEMENT
Program untuk mendisain dinding dan lantai basement 1 tingkat secara otomatis. Beban tekanan tanah, tekanan air, uplift, berat sendiri akan dihitung secara otomatis. Momen maksimum dihitung berdasarkan tabel pelat. Sangat mudah digunakan. Cukup memasukkan parameter yang diperlukan. Output berupa tulangan yang dibutuhkan.
PILECAP
Program untuk mendisain pilecap secara otomatis. Untuk tiang segitiga, kotak, pipa/spun dan bulat. Efek grup dapat dimasukkan. Momen rencana maksimum dihitung berdasarkan berbagai konfigurasi pile. Sangat mudah digunakan. Cukup memasukkan parameter yang diperlukan. Output berupa tebal pilecap dan tulangan yang dibutuhkan.
FOOT
Program untuk merencanakan fundasi telapak secara otomatis. Untuk uniaxial/biaxial bending. Sangat mudah digunakan. Cukup memasukkan parameter yang diperlukan. Output berupa tebal pilecap dan tulangan yang dibutuhkan.
RETWALL
Program untuk merencanakan Concrete Cantilever Wall secara otomatis. Beban tekanan tanah, tekanan air, uplift, berat sendiri akan dihitung secara otomatis. Momen maksimum dihitung berdasarkan tabel pelat. Sangat mudah digunakan. Cukup memasukkan parameter yang diperlukan. Output berupa tebal pilecap dan tulangan yang dibutuhkan.
MATPLAN
Program untuk menghitung kebutuhan material baja dan waste karena pemotongan. Secara panjang (batang/rod) atau luas (pelat). Untuk optimasi pemakaian baja dan schedule pemotongan. Sangat bermanfaat untuk kontraktor baja. Identifikasi baja per batang atau per lembaran.
STEELCON
Program untuk merencanakan sambungan baja. Tersedia 7 macam sambungan: Shear connection, smi-rigid and rigid connection. Beam-girder, Girder-Colum, Roof top. Limit State disain. Berdasarkan disain code ASD-89. Laporan lengkap siap untuk dicetak.
TOWERGEN
Steel Tower 3D Model Generator. Cukup 10 baris data per tower 3D. Block oriented modelling, dapat mengubah dan memeriksa hasil disain per block tower. Sangat mudah digunakan. Satu tower dapat selesai didisain dari awal dalam 10-30 menit. Telah digunakan oleh banyak pabrik tower dan konsultan telekomunikasi terkemuka di Indonesia untuk projek Menara Radio Pos, Menara GSM, dan Menara PLN di seluruh Indonesia.
PWRLINE
Program untuk menghitung beban pada menara transmisi tegangan PLN secara otomatis. Beban angin, beban kondisi layan, beban kondisi putus / broken condition. Untuk Suspension dan Tension Tower. Laporan lengkap untuk siap dicetak. Telah digunakan oleh banyak pabrik tower dan konsultan di Indonesia untuk projek Menara PLN di seluruh Indonesia.
PPC
Program Project Planning and Control berbasis Grafis DOS. Multi subresource, multi-subacitivities. Interactive (diagram terlihat langsung dilayar). Perhitungan waktu yang akurat termasuk hari libur dsb. Uraian analisis biaya juga termasuk. Belum dikembangkan untuk for Windows.
DYNAX
Program Analisis Time History untuk Struktur Rangka dengan Viscous-Elastic Damper. Dibuat untuk PAU Rekayasa - ITB. Dapat menangani beban impact load, harmonic load, response spectrum, acceleration. Untuk keperluan riset analisis dinamik dan uji banding dengan lab test.
TDS-302
Program bantu laboratorium struktur untuk membaca hasil test struktur (structural testing) secara otomatis dengan menggunakan data logger TDS-302 ex Jepang dan computer notebook dengan Serial connection. Pada layar komputer akan terlihat secara real time 4 grafik secara simultan dan tabel pembacaan lengkap. Hasil pembacaan mentah maupun berskala disimpan secara realtime kedalam file untuk diproses lebih lanjut. Telah digunakan di Lab Struktur dan Gempa, Pusat Penelitian Pemukiman PU, Cileunyi Bandung.
UCAM-70A
Program bantu laboratorium struktur untuk membaca hasil test struktur (structural testing) secara otomatis dengan menggunakan data logger UCAM-70A dan computer notebook dengan Serial connection. Pada layar komputer akan terlihat secara real time 4 grafik secara simultan dan tabel pembacaan lengkap. Hasil pembacaan mentah maupun berskala disimpan secara realtime kedalam file untuk diproses lebih lanjut. Telah digunakan di Lab Struktur dan Gempa ITB Bandung.
TREMOR
Program untuk analisis data Test Micro-Tremor. Perilaku getaran struktur akibat beban dinamik yang kecil seperti lalu-lintas jalan raya atau kereta api atau getaran buatan dapat direkam dengan alat Micro-Tremor yang peka. Periode getaran alamiah bangunan dapat dihitung dengan menggunakan Fast Fourier Transform (DFT). Spectrum dan Grafik dapat ditampilkan dan dicetak dilayar. Dibuat untuk Lab Struktur dan Gempa Puskim Bandung.
NBICHK
Program untuk mengolah data dalam format NBI (National Bridge Inventory System).
QPONTIS
Program Interface untuk QPONTIS, Bridge Management Program. Berbasis SQL, ODBC. Untuk QPONTIS dalam Oracle.
NBRASS
Program Interface untuk BRASS, Bridge Rating and Analysis System.
REBARM
Rebar Bending Schedule untuk 40 macam type tekukan baja. Interactive input dan disertai ilustrasi bentuk tekukan.
Perencanaan Perkerasan Jalan
Salah satu metoda perencanaan untuk tebal perkerasan jalan yang sering digunakan adalah metoda AASHTO’93. Metoda ini sudah dipakai secara umum di seluruh dunia untuk perencanaan serta di adopsi sebagai standar perencanaan di berbagai negara. Metoda AASHTO’93 ini pada dasarnya adalah metoda perencanaan yang didasarkan pada metoda empiris. Parameter yang dibutuhkan pada perencanaan menggunakan metoda AASHTO’93 ini antara lain adalah :
a. Structural Number (SN)
b. Lalu lintas
c. Reliability
d. Faktor lingkungan
e. Serviceablity
1.1 Structural Number
Structural Number (SN) merupakan fungsi dari ketebalan lapisan, koefisien relatif lapisan (layer coefficients), dan koefisien drainase (drainage coefficients). Persamaan untuk Structural Number adalah sebagai berikut :
SN = a1D1 + a2D2m2 + a3D3m3 ……………………………………………..(Pers. 1)
Dimana :
SN = nilai Structural Number.
a1, a2, a3 = koefisien relatif masing‐masing lapisan.
D1, D2, D3 = tebal masing‐masing lapisan perkerasan.
m1, m2, m3 = koefisien drainase masing‐masing lapisan.
1.2 Lalu Lintas
Prosedur perencanaan untuk parameter lalu lintas didasarkan pada kumulatif beban gandar standar ekivalen (Cumulative Equivalent Standard Axle, CESA). Perhitungan untuk CESA ini didasarkan pada konversi lalu lintas yang lewat terhadap beban gandar standar 8.16 kN dan mempertimbangkan umur rencana, volume lalu lintas, faktor distribusi lajur, serta faktor bangkitan lalu lintas (growth factor).
1.3 Reliability
Konsep reliability untuk perencanaan perkerasan didasarkan pada beberapa ketidaktentuan (uncertainties) dalam proses perencaaan untuk meyakinkan alternatif‐alternatif berbagai perencanaan. Tingkatan reliability ini yang digunakan tergantung pada volume lalu lintas, klasifikasi jalan yang akan direncanakan maupun ekspetasi dari pengguna jalan.
Reliability didefinisikan sebagai kemungkinan bahwa tingkat pelayanan dapat tercapai pada tingkatan tertentu dari sisi pandangan para pengguna jalan sepanjang umur yang direncanakan. Hal ini memberikan implikasi bahwa repetisi beban yang direncanakan dapat tercapai hingga mencapai tingkatan pelayanan tertentu.
Pengaplikasian dari konsep reliability ini diberikan juga dalam parameter standar deviasi yang mempresentasikan kondisi‐kondisi lokal dari ruas jalan yang direncanakan serta tipe perkerasan antara lain perkerasan lentur ataupun perkerasan kaku. Secara garis besar pengaplikasian dari konsep reliability adalah sebagai berikut:
a. Hal pertama yang harus dilakukan adalah menentukan klasifikasi dari ruas jalan yang akan direncanakan. Klasifikasi ini mencakup apakah jalan tersebut adalah jalan dalam kota (urban) atau jalan antar kota (rural).
b. Tentukan tingkat reliability yang dibutuhkan dengan menggunakan tabel yang ada pada metoda perencanaan AASHTO’93. Semakin tinggi tingkat reliability yang dipilih, maka akan semakin tebal lapisan perkerasan yang dibutuhkan.
c. Satu nilai standar deviasi (So) harus dipilih. Nilai ini mewakili dari kondisi‐kondisi lokal yang ada. Berdasarkan data dari jalan percobaan AASHTO ditentukan nilai So sebesar 0.25 untuk rigid dan 0.35 untuk flexible pavement. Hal ini berhubungan dengan total standar deviasi sebesar 0.35 dan 0.45 untuk lalu lintas untuk jenis perkerasan rigid dan flexible.
1.4 Faktor Lingkungan
Persamaan‐persamaan yang digunakan untuk perencanaan AASHTO didasarkan atas hasil pengujian dan pengamatan pada jalan percobaan selama lebih kurang 2 tahun. Pengaruh jangka panjang dari temperatur dan kelembaban pada penurunan serviceability belum dipertimbangkan. Satu hal yang menarik dari faktor lingkungan ini adalah pengaruh dari kondisi swell dan frost heave dipertimbangkan, maka penurunan serviceability diperhitungkan selama masa analisis yang kemudian berpengaruh pada umur rencana perkerasan.
Penurunan serviceability akibat roadbed swelling tergantung juga pada konstanta swell, probabilitas swell, dll. Metoda dan tata cara perhitungan penurunan serviceability ini dimuat pada Appendix G dari metoda AASHTO’93.
1.5 Serviceability
Serviceability merupakan tingkat pelayanan yang diberikan oleh sistem perkerasan yang kemudian dirasakan oleh pengguna jalan. Untuk serviceability ini parameter utama yang dipertimbangkan adalah nilai Present Serviceability Index (PSI). Nilai serviceability ini merupakan nilai yang menjadi penentu tingkat pelayanan fungsional dari suatu sistem perkerasan jalan. Secara numerik serviceability ini merupakan fungsi dari beberapa parameter antara lain ketidakrataan, jumlah lobang, luas tambalan, dll.
Nilai serviceability ini diberikan dalam beberapa tingkatan antara lain :
a. Untuk perkerasan yang baru dibuka (open traffic) nilai serviceability ini diberikan sebesar 4.0 – 4.2. Nilai ini dalam terminologi perkerasan diberikan sebagai nilai initial serviceability (Po).
b. Untuk perkerasan yang harus dilakukan perbaikan pelayanannya, nilai serviceability ini diberikan sebesar 2.0. Nilai ini dalam terminologi perkerasan diberikan sebagai nilai terminal serviceability (Pt).
c. Untuk perkerasan yang sudah rusak dan tidak bisa dilewati, maka nilai serviceability ini akan diberikan sebesar 1.5. Nilai ini diberikan dalam terminologi failure serviceability (Pf).
Thursday, October 20, 2011
Hoover Dam- By Pass
The dam planning stage started in 1920's to tame the mighty Colorado river. This project was primarily needed to alleviate the constant flooding of the Imperial Valley, regularly breaking manmade dikes and levies and ruining farmlands for years. In 1905 the river overflowed so much that it flowed over 50 miles to create the Salton Sea, filling what was once an ancient dry lakebed. Unfortunately man had been mining salt from this dry lakebed for years to provide salt to the LA area. The flooding of the salt mine eliminated LA's source for salt, and as a result this new body of fresh water turned salty, today 5 times as salty as the ocean! Hence, the need to tame the Colorado river was of high importance to prevent future disasters. 15yrs later Hoover Dam was conceived.
The site of Hoover Dam was very key for the project to hold one of the largest manmade bodies of water in the country. Near Boulder Canyon, the dam was originally called Boulder Canyon Dam. The nearby down of Boulder City was created specifically to house and feed the workers that built the dam, not to mention manufacture many of the parts for the dam, like penstock pipes.
Even by today's standards Hoover Dam was a gigantic project. At the time it was the worlds largest project made with concrete, not to mention the largest public works project in US history. Keep in mind there were no computers, this was all done on paper using a slide rule and pure ingenuity. It's an amazing engineering accomplishment.
After years of planning the project began in the middle of the Great Depression. Workers were easy to find, pay was good for those times but the work was dangerous and very hot during the summer. Work occurred 24X7 to finish the project as soon a feasibly possible, and it was finished 2yrs ahead of schedule. The first job was to divert the river which began in 1932. This was done by building two cofferdams to prevent flooding and divert water around the construction project using diversion tunnels. At the same time the diversion project was underway, the canyon walls were prepared to hold the new dam by clearing loose rocks with dynamite and bulldozers. Remnants from the canyon clearing aided the building of the cofferdams.
Over the a total of 5yrs of construction (April 1931to March 1936) there was an average crew of 3500 men that worked on the project daily. Over this 5yr period there were over 21,000 individuals that worked on the dam. Monthly payroll during the 5 years for an average crew of 3500 was $500,000, or $140/mo per worker.
Pouring thick concrete has it's own problems. The curing process of concrete creates heat. Thick bodies of concrete cannot cure evenly, required for strength and integrity to prevent cracks. Another problem is the concrete needs to cure fast enough to stay on schedule. To address these problems the concrete was poured in 5ft thick sections with embedded cooling pipes that run water through the concrete to cool the concrete evenly and quickly. These 1" pipes are still in the dam concrete today, over 582 miles of pipe! But even today the concrete is still curing, harder and harder every year......... 75yrs later.
The dam is a whooping 725ft high, 2nd highest in the country. The dam generators produce over 2000 megawatts of power from water turning might generator turbines. Besides the massive watershed and electrical power the dam generates, it also provides an incredible playground for boaters and fisherman. Lake Mead was named after the dam's project manager, Elwood Mead who was a legend in his own time with such an incredible engineering project, successfully done without computers!
With the rugged working conditions, dangerous and hot, there were 112 lives lost from various reasons, such as accidents, heat stroke and heart failure. In the very beginning when work started there was a strike attempt which failed, but resulted in more attention to providing water hydration to workers on a regular basis.... well duh!
Originally deemed the Boulder Canyon Dam, in 1931 it was named Hoover Dam by Ray Wilbur, President Hoovers interior secretary. This was very controversial as Hoover was commonly blamed for starting the Great Depression. Later when Franklin Roosevelt became president in 1932 (before the dam was finished) it was renamed "Boulder Dam" by Harold Ickes, FDR's interior secretary who disliked Hoover and his economic policies. In 1947 the dam was renamed "Hoover Dam" by President Truman under pressure from Congress as the public forgot about President's Hoover's handling of the Great Depression.
Hoover dam also served as a highway connector between Arizona and Nevada. A two lane highway on top of the dam used to handle ~ 17,000 vehicles crossing the dam each day. As a result of 911 no heavy trucks are allowed to cross the dam.
If you're visiting the area MAKE SURE you take the HOOVER DAM TOUR. It's the best dam tour in the West ;-) You'll talk about the tour for years, seeing massive generators, pipes, and concrete objects, including a big bridge, all made by man. It's truly and incredible dam that inspires people of all ages, sexes, religions and races. It's a must do tour. The economical visit includes FREE PARKING on the Arizona side of the dam. Have your most fit person volunteer to drive and drop others off at the tour center to wait in line for tour tickets. Your volunteer walks the 1/2mi from the free parking lots to the tour center, about an 8min walk. Stay in touch with your cellphone. This little tip will save you time and money.
If you haven't taken the dam tour before, it's a good prelude to visit the Alan Bible visitor center before you do so, it's free. They have all kinds of information about Lake Mead and the surrounding areas to help you get oriented with your visitation plans. The visitor center is open from 8:30am to 4:30pm except Thanksgiving, when it's closed.
Saturday, October 15, 2011
Largest Solar Powered Creations of The World
World’s largest solar-powered office building
The world’s largest solar-powered building has been unveiled in Dezhou, Shangdong Province in northwest China. The 75,000-square-meter office building is based on the sun dial structure and marks the urgency of seeking renewable energy to replace polluting fossil fuels. The building provides space for exhibition centers, scientific research facilities, meeting and training facilities and a sustainable hotel. Dubbed the Sun and the Moon Altar micro-row buildings, the architecture features the Chinese characters for sun and moon, while the white exterior symbolizes clean energy. In addition to a massive solar array, green ideas have been applied throughout the construction process. The external structure used only 1% steel for the Bird’s nest and advanced roof and wall insulation systems reduce 30% more energy than the national energy saving standard. The building will be the main venue for the 4th World Solar City Congress.
World’s largest solar-powered footbridge
Premier Anna Bligh has officially opened the world’s largest footbridge of its kind in Brisbane’s CBD. Constructed at a cost of over $63 million, the Kurilpa Bridge is expected to be used by about 36,500 people each week. The structure is 470m long and more than 1050 people were employed on the project. Spanning the Brisbane River, the bridge employs a sophisticated LED lighting scheme that can be programmed to produce an array of different lighting effects, which will become a feature of Brisbane’s annual Riverfire celebrations. The energy-saving lighting system will be powered by 84 solar panels that collectively generate a daily output of about 100KWh and an average yearly output of 38MWh. The solar energy generates supplies 75% of the power required to run the LED setup in the fully lit mode, but in most lighting configurations, 100% of the energy required will come from the solar panels. Surplus electricity generated by the solar array will be returned to the main grid.
World’s largest solar powered trimaran
PlanetSolar is a multi-hull vessel, commissioned by German investor Immo Stroeher. The vessel being built at a shipyard in Kiel, Germany is said to be the world’s largest solar-powered trimaran. It will not have sails; instead will rely on solar panels to circumnavigate the world in 140 days. The triple-hull, 30-metre-long, 15-metre-wide boat will incorporate solar cells onto the 508-square-metre top of the main centre hull. The solar panels are capable of producing 1,000 watts of electricity daily. Surplus energy is stored in the batteries, enabling the 58-ton trimaran to continue its journey without sun for up to three days at a speed of 10 knots or 18 kilometres per hour.
World’s largest solar audio system
Grzebik Design has come out with what is being called the world’s largest solar powered loudspeaker system. Located in the Taiwan National Stadium in Kaohsiung, the audio system is capable of cranking out 105 dB of sound to 40,000 spectators. The ultra-modern $5 billion Taiwan National Stadium features a stunning 14,155 square meter roof incorporating 8,844 solar panels, which emulates the form of a flowing river, and generates 1.14 million KWh annually preventing the release of 660 tons-per-annum of atmospheric carbon dioxide. The electricity generated is used to power the audio system. Designed by renowned Japanese architect Toyo Ito the whole system comprises of 60 distributed Apogee Sound AE-7SX weather-resistant loudspeakers for primary seating area coverage, 12 Apogee Sound ALA-5WSX weather resistant Acoustic Linear Array loudspeakers provides field coverage, and 2 Apogee Sound AFI-205 and two AFI-Point5 loudspeakers provide Control Room audio monitoring.
World’s largest Solar Power Tower Plant
Abengoa, a Spanish engineering company has developed a huge 54 story high tower near Seville in Spain. Said to be the world’s largest solar power tower plant, it consists of more than 1200-mirrored heliostats neighboring a huge tower. Called the ‘PS20 plant’, the installation has heliostats covering 1291 ft2 area each, giving the entire heliostat field a massive area of 155,000 m 2. Each heliostat tracks the sun throughout the day on two axes and concentrates the radiation onto a receiver located on the upper part of the 531 ft tower. After this, the receiver converts 92% of received sunlight into steam that is piped down to a turbine driven generator at the base of the tower. The PS20 plant is capable of generating 20 megawatts (MW) of electricity, enough to supply 10,000 homes.
World’s Largest Solar Project
Taking advantage of the dryness of Sahara Desert, renewable energy giants are prepping up the installation of the world’s largest solar power plant that collectively will generate a whopping 100GW of concentrating solar power. Promoted by Desertec Foundation, the plant will be built by 20 blue chip German companies, who would be gathering together to discuss plans and investments to create the massive project. Unlike other solar power plants, which are usually built on a single location, this massive plant would be scattered throughout politically stable countries in northern Africa. The collective output of the plant would be 80 times larger than a similar plant being planned for the Mojave Desert. The power output would be transported across the Mediterranean Sea to Europe on high-voltage DC lines that will finally supply 15% of the energy demand. The companies involved in the planning state that similar installations have to be constructed to end the gripping energy crisis. The €400bn project would take 10-15 years to go online, but once constructed it will help other countries of the world to aim towards renewable energy generating plants to end their dependence on fossil fuels.
World’s largest solar powered tree
Brisbane City Council have recently refurbished world’s largest solar powered Christmas tree to delight the Brisbane crowds. The beautiful tree has decked it out with new foliage, decorations and a sophisticated solar powered lighting system featuring 16,000 bulbs. Location in King George Square, the Christmas Tree features 250 red opaque baubles, a multicoloured twinkling light system and a giant star made up of solar panels for the tree’s top. The new-look tree would be more sustainable and help in saving the environment.
World’s Largest Solar Stadium
No one has ever attempted to power an entire stadium with solar energy before, but Japan-based Toyo Ito Architects are using solar energy beyond all conventions to power the main stadium built for the World Games. The $150 million stadium can house 55,000 spectators and can power 80% of the surrounding neighborhood if it‘s solar array is connected to the grid during days when the stadium is not being used. Every inch of the stadium’s incredible 14,155-sq-m roof area is covered with 8,844 solar panels that could potentially generate a whopping 1.14GWh of electricity annually. The record braking stadium is touted to be the world’s largest solar-powered stadium.
World’s largest solar cooking system
India has been working on to escalate the use of solar energy in the country. The country is boasting the development of the world’s largest solar steam cooking system that has been installed in Shirdi in the state of Maharashtra. The system, built at the cost of about $280,000 uses solar energy to convert water into 3,500kg of steam daily, which is then used to cook food for the pilgrims visiting the shrine of 19th century saint Sai Baba. The system can feed up to 20,000 people per day and can save about 100,000kg of cooking gas annually. Of the total cost needed to install the system about 43% was paid by the government.
Chesapeake Bay Bridge-Tunnel
The Chesapeake Bay Bridge-Tunnel uses a combo of tunnels and bridges over two separated shipping channels using four artificial islands built in the bay as portals.
The bridge-tunnel was opened on April 15th, 1964, in August 1987 it was officially named the Lucius J. Kellam Jr. Bridge-Tunnel after one of the civic leaders who worked for its development. However, it still is best known as Chesapeake Bay Bridge-Tunnel.
The bridge part of the Chesapeake Bay Bridge-Tunnel as far as I can know is 15.6 Miles long which is why this bridge is placed at number at the worlds 9th longest bridge and 7th longest over water and 4th longest bridge in the USA and 8th longest that is used by autos.
The above water part of the bridge was upgraded in 1995-1999 from 2 lanes to a 4 lanes at a cost of $200 million.
After the bridge-tunnel opened in 1964, it was selected as One of the Seven Engineering Wonders of the Modern World by American Society of Civil Engineers, however it has been replaced on this list since with more recent engineering wonders.
Thursday, October 13, 2011
Magdeburg Water Bridge
The Elbe–Havel Canal and Mittelland Canal canals had previously met near Magdeburg but on opposite sides of the Elbe, which was at a significantly lower elevation than the two canals. Ships moving between the two had to make a 12-kilometre (7.5 mi) detour, descending from the Mittelland Canal through the Rothensee boat lift into the Elbe, then sailing downstream on the river, before ascending up to the Elbe-Havel Canal through Niegripp lock. Low water levels in the Elbe often prevented fully laden canal barges from making this crossing, requiring time-consuming off-loading of cargo.
History
Canal engineers had first conceived of joining the two waterways as far back as 1919, and by 1938 the Rothensee boat lift and bridge anchors were in place, but construction was postponed during World War II. After the Cold War split Germany, the project was put on hold indefinitely by the East German government.
The reunification of Germany and establishment of major water transport routes made the Water Bridge a priority again. Work started in 1997, with construction taking six years and costing €500 million. The water bridge now connects Berlin’s inland harbour network with the ports along the Rhine river. The aqueduct's trough structure incorporates 24,000 tonnes of steel and 68,000 cubic meters of concrete.
Locks
In addition to the bridge, a double lock was constructed to allow vessels to descend from the level of the bridge and Mittelland Canal to that of the Elbe-Havel Canal.
Additionally a single lock was constructed at Rothensee to allow vessels to descend from the bridge level to the Elbe and the Magdeburg harbour. This lock is parallel to, and replaces the Rothensee boat lift, and can accommodate larger vessels than the lift.
Wikipedia
Underground Skyscraper in Mexico City
The design is an inverted pyramid with a central void to allow all habitable spaces to enjoy natural lighting and ventilation. To conserve the numerous activities that take place on the city square year round (concerts, political manifestations, open-air exhibitions, cultural gatherings, military parades.), the massive hole will be covered with a glass floor that allows the life of the Earthscraper to blend with everything happening on top.
Architect: BNKR Arquitectura
Location: Mexico City, Mexico
Partners: Esteban Suárez (Founding Partner), Sebastián Suárez
Project Leader: Arief Budiman
Project Team: Arief Budiman, Diego Eumir, Guillermo Bastian, Adrian Aguilar
Collaborators: Jorge Arteaga, Zaida Montañana, Santiago Becerra
Area: 775,000 m2
Status: Competition
Photography: Sebastian Suárez